Contact address:
Professor, Ph.D.,
Research areas:
Soil behaviour
Ground improvement
Reclmimed land with dredged soils
List of main publications:
1)Wang, H., Zeng, L.L., Bian, X. & Hong, Z.S. (2018). Evaluation of vertical superimposed stress in subsoil induced by embankment loads.International Journal of Geomechanics, ASCE (in press).
2)Zeng, L.L., Hong, Z.S. & Han, J. (2018). Experimental investigations on discrepancy in consolidation degrees with deformation and pore pressure variations of natural clays. Applied Clay Science, 152, 38-43.
3)Zeng L.L., Hong, Z.S., Tian, W.B. and Shi, J.W. (2018). Settling behavior of clay suspensions produced by dredging activities in china. Marine Georesources & Geotechnology, 36(1): 30-36.
4)Zeng, L.L., Hong, Z.S., Cui, Y.J. and Martin, L. (2018). Compression reference of soil structure evaluation with reconstituted clays at different initial water contents. Marine Georesources & Geotechnology, 10.1080/1064119X.2017.1387949.
5)Ding, J.W., Shi M.L., Liu W.Z. and Hong, Z.S. (2017). In-situ Stabilization of Problematic Mixtures in a Failed Roadway Subbase. Journal of Performance of Constructed Facilities, ASCE, 31(3): 04017002~1-7.
6)Song M.M, Zeng L.L, Hong Z.S. (2017). Pore fluid salinity effects on physicochemical-compressive behaviour of reconstituted marine clays. Applied Clay Science, 146: 270-277.
7)Zeng, L. L., Hong, Z. S., Gao,Y. F. (2017). One-dimensional compression behaviour of reconstituted clays with and without humic acid. Applied Clay Science, 144: 45–53.
8)Zeng, L. L., Hong, Z. S., Gao,Y. F. (2017). Practical estimation of compression behaviour of dredged clays with three physical parameters. Engineering Geology, 217: 102-109.
9)Zeng L. L., Hong, Z. S., Wang, C. and Yang, Z. Z. (2016). Experimental study on physical properties of clays with organic matter soluble and insoluble in water. Applied Clay Science, 132-133: 660-667.
10)Bian, X., Hong, Z.S., Ding, J.W. (2016). Evaluating the effect of soil structure on the ground response during shield tunnelling in Shanghai soft clay. Tunnelling and Underground Space Technology, 58: 120-132.
11)Horpibulsuk, S., Liu, Martin D., Zhuang Z.L., and Hong, Z.S. (2016). Complete compression curves of reconstituted clays. International Journal of Geomechanics, ASCE, 16 (6): 06016005-1-5. 10.1061/(ASCE)GM.1943-5622.0000663.
12)Zeng, L.L., Hong, Z.S. and Cui, Y.J. (2016). Time-dependent compression behaviour of dredged clays at high water contents in
13)Zeng, L.L., Hong, Z. S. andCui, Y. J. (2015). Determining the virgin compression lines of reconstituted clays at different initial water contents. Canadian Geotechnical Journal, 52(9): 1408-1415, dx.doi.org/10.1139/cgj-2014-0172
14)Zeng, L.L., Hong, Z. S. andCui, Y. J. (2015). On the volumetric strain - time curve patterns of dredged clays during primary consolidation. Géotechnique, 65(12): 1023-1028, dx.doi.org/10.1680/geot./15-T-003
15)Zeng, L.L. and Hong, Z. S. (2015). Experimental study of primary consolidation time for structured and destructured clays. Applied Clay Science, 116-117: 141-149.dx.doi.org/10.1016/j.clay.2015.08.027
16)Hong, Z. S., Bian, X., Cui, Y. J., Gao, Y. F. and Zeng, L.L. (2013). Effect of initial water content on undrained shear behaviour of reconstituted clays. Géotechnique, 63(6): 441-450.
17)Hong, Z. S., Zeng, L. L., Cui, Y. J., Cai, Y. Q. and Lin, C. (2012). Compression behaviour of natural and reconstituted clays. Géotechnique, 62(4): 291-301.
18)Zeng, L. L., Hong, Z. S., Cai, Y. Q. and Han, J. (2011). Change of hydraulic conductivity during compression of undisturbed and remolded clays.Applied Clay Science, 51(1-2): 86-93.
19)Hong, Z. S., Yin, J. and Cui, Y. J. (2010). Compression behaviour of reconstituted soils at high initial water contents. Géotechnique, 60(9): 691-700.
20)Chai, J. C., Hong, Z. S., and Shen, S. L. (2010). Vacuum-drain method induced pressure distribution and ground deformation, Geotextiles and Geomemberanes. 28, 525–535.
21)Jia, R., Chai, J. C., Hino T., and Hong, Z. S. (2010). Strain Rate Effect on the Consolidation Behavior of Ariake Clay. Geotechnical Engineering, Proceedings of ICE, 163 (5): 267-277.
22)Han, J., Chen, J. F., Hong, Z. S. and Shen, S. L. (2010). Mitigation of levee failures using deep mixed columns and geosynthetics. Geomechanics and Geoengineering: An International Journal, 5(1): 49–55.
23)Liu, S.Y., Han, J., Zhang, D.W. & Hong, Z.S. (2008). A combined DJM-PVD method for soft ground improvement. Geosynthetics International, 15(1): 43–54.
24)Hong, Z. S., Shen, S. L., Deng, Y. F. and Negami, T (2007). Loss of soil structure for natural sedimentary clays. Geotechnical Engineering, Proceedings of ICE. 160 (3): 153 - 159.
25)Shen, S. L., Hong, Z. S., and Xu, Y. S. (2007). Reducing differential settlements of approach embankments. Geotechnical Engineering, Proc. of
26)Hong, Z. S. and Han, J. (2007). Evaluation of sample quality of sensitive clay using intrinsic compression concept. Journal of Geotechnical and Geoenvironmental Engineering, ASCE. 133(1): 83-90
27)Hong, Z. S. (2007). Void Ratio-Suction Behavior of Remolded Ariake Clays. Geotechnical Testing Journal, ASTM. 30(3): 234-239
28)Hong, Z. S. (2006). Correlating compression properties of sensitive clays using void index. Géotechnique, 56 (8): 573–577
29)Shen, S. L., Xu, Y. S., and Hong, Z. S. (2006). Estimation of Land Subsidence Based on Groundwater Flow Model, Marine Georesources and Geotechnology, 24 (2): 149-167.
30)Hong, Z. S., Tateishi, Y. and Han, J. (2006). Experimental study of macro and micro-behavior of natural diatomite. Journal of Geotechnical and Geoenvironmental Engineering, ASCE. 132(5): 603-610.
31)Hong, Z. S., Liu, S. Y., Shen, S. L. and Negami, T (2006). Comparison in undrained shear strength between undisturbed and remolded Ariake clays. Journal of Geotechnical and Geoenvironmental Engineering, ASCE. 132 (2): 272-275.
32)Hong, Z. S., Liu, S. Y. and Negami, T. (2005). Strength sensitivity of marine Ariake clays. Marine Georesources and Geotechnology, 23(3): 221-233.
33)Shen, S. L., Zhu, H. H., Han, J. and Hong, Z. S. (2005). Evaluation of a dike damaged by pile driving in soft clay. Journal of Performance and Constructed Facilities, ASCE. 19(4): 300-307.
34)Shen, S. L., Chai, J. C., Hong, Z. S. and Cai, F. (2005). Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement. Geotextiles and Geomembranes, 23: 463–485.
35)Hong, Z. S., Negami, T. and Guo, H. L. (2004). Gravitational sedimentation behavior of sensitive marine Ariake clays. Marine Georesources and Geotechnology, 22(1-2), 49-63.
36)Satoh, T., Tsuchida, T., Mitsukuri, K. and Hong, Z. S. (2001). Field placing test of lightweight treated soil under seawater in
37)Hong, Z. S. and Tsuchida, T. (1999). On compression characteristics of Ariake clays. Canadian Geotechnical Journal, 36(5): 807 - 814.
38)Hong, Z. S. and Onitsuka, K. (1998). A method of correcting yield stress and compression index of Ariake clays for sample disturbance. Soils and Foundations, 38(2): 211 - 222.
39)Onitsuka, K., Hong, Z. S., Hara, Y. and Yoshitake, S. (1995). Interpretation of oedometer test data for natural soils. Soils and Foundations, 35(3): 61 - 70.
40)Onitsuka, K. and Hong, Z. S. (1995). A new method of correcting unconfined compressive strength of natural clays for sample disturbance. Soils and Foundations, 35(2): 95 -105.