基本信息:
朱逸尘,博士,副研究员,硕士生导师,交通学院桥梁工程系教师
所属团队:桥梁智能建养与性能提升
办公地点:东南大学九龙湖校区交通学院大楼701室
联系电话:18625038510(微信同号)
联系方式:zhuyichen@seu.edu.cn
个人简介:
朱逸尘,1992年5月生,博士,硕士生导师。2018年10月博士毕业于英国利物浦大学土木工程系;2020年9月加入东南大学交通学院桥梁工程系,主要研究方向为桥梁智慧运维,结构健康监测与数字孪生。
主持参与国家自然科学基金、江苏省重点研发、英国工程与自然科学基金等项目6项。已发表SCI期刊论文11篇,其中以第一作者在Mechanical Systems and Signal Processing, Structural Control and Health Monitoring, Engineering Structures等国际权威期刊发表SCI论文9篇,近五年谷歌学术总被引200余次。担任美国土木工程协会(ASCE),英国土木工程协会(ICE),英国机械工程协会(IMechE)等协会会员,担任美国机械工程协会ASME-IMAC会议数字孪生(Digital Twin)分会场主席。参与 Mechanical Systems and Signal Processing 等多个国际期刊的审稿工作。
研究方向:
l 桥梁智慧运维
l 结构健康监测
l 数字孪生
教育经历:
2014.10-2018.10,英国利物浦大学工程学院,土木工程,博士(导师:Siu-Kui Au教授)
2010.09-2014.06,英国利物浦大学工程学院,土木工程,学士
工作经历:
2020.09至今,东南大学交通学院,桥梁工程系,副研究员
2018.10-2020.07,英国谢菲尔德大学,动力学研究中心,博士后研究员
科研项目:
1. 国家自然科学基金青年基金项目:基于物理-数据融合模型的桥梁运营模态识别方法研究,2023-2025,主持
2. 江苏省自然科学基金青年基金项目:面向桥梁动力学参数的物理-数据融合模型识别与更新机理研究,2022-2025,主持
3. 江苏省重点研发项目:基于数字孪生的智慧桥梁建养一体化关键技术与系统研发,2021-2024,主要参与
4. 江苏省自然科学基金面上项目:多尺度多源不确定性下FRP结构可靠性分析方法研究,2022-2024,参与
5. 英国工程与自然科学基金项目:Digital Twins for Improved Dynamic Design,2018-2020,参与
6. 英国工程与自然科学基金项目:Uncertainty Quantification and Management in Ambient Modal Identification,2014-2018,参与
学术成果:
期刊论文:
[1] Zhu Yi-Chen, Gardner Paul, Wagg David J., Barthorpe Robert J., Cross Elizabeth J., Fuentes Ramon. Robust equation discovery considering model discrepancy: A sparse Bayesian and Gaussian process approach[J]. Mechanical Systems and Signal Processing,2022,168:108717.(SCI期刊论文,JCR一区, IF:8.934)
[2] Zhu Yi-Chen, Xiong Wen, Song Xiao-Dong. Structural performance assessment considering both observed and latent environmental and operational conditions: A Gaussian process and probability principal component analysis method[J]. Structural Health Monitoring, 2022, 14759217211062099.(SCI期刊论文,JCR一区, IF:5.710)
[3] Yan Wang-Ji, Chronopoulos Dimitrios, Yuen Ka-Veng, Zhu Yi-Chen. Structural anomaly detection based on probabilistic distance measures of transmissibility function and statistical threshold selection scheme[J]. Mechanical Systems and Signal Processing,2022,162: 108009.(SCI期刊论文,JCR一区, IF:8.934)
[4] Zhu Yi-Chen, Au Siu-Kui. Bayesian data driven model for uncertain modal properties identified from operational modal analysis[J]. Mechanical Systems and Signal Processing,2020,136(C):106511.(SCI期刊论文,JCR一区, IF:8.934)
[5] Zhu Yi-Chen, Au Siu-Kui. Bayesian modal identification method based on general coherence model for asynchronous ambient data[J]. Mechanical Systems and Signal Processing,2019,132:194-210.(SCI期刊论文,JCR一区, IF:8.934)
[6] Zhu Yi-Chen, Au Siu-Kui, Brownjohn James Mark William. Bayesian operational modal analysis with buried modes[J]. Mechanical Systems and Signal Processing,2019,121:246-263.(SCI期刊论文,JCR一区, IF:8.934)
[7] Brownjohn James Mark William, Au Siu-Kui, Zhu Yi-Chen, Sun Zhen, Li Bin-Bin, Bassitt James, Hudson Emma, Sun Hong-Bin. Bayesian operational modal analysis of Jiangyin Yangtze River Bridge[J]. Mechanical Systems and Signal Processing,2018,110:210-230.(SCI期刊论文,JCR一区,IF:8.934)
[8] Zhu Yi-Chen, Xie Yan-Long, Au Siu-Kui. Operational modal analysis of an eight-storey building with asynchronous data incorporating multiple setups[J]. Engineering Structures,2018,165:50-62.(SCI期刊论文,JCR一区, IF=5.582)
[9] Zhu Yi-Chen, Au Siu-Kui. Bayesian operational modal analysis with asynchronous data, Part II: Posterior uncertainty[J]. Mechanical Systems and Signal Processing,2018,98:920-935.(SCI期刊论文,JCR一区, IF:8.934)
[10] Zhu Yi-Chen, Au Siu-Kui. Bayesian operational modal analysis with asynchronous data, part I: Most probable value[J]. Mechanical Systems and Signal Processing,2018,98:652-666.(SCI期刊论文,JCR一区, IF:8.934)
[11] Zhu Yi-Chen, Au Siu-Kui. Spectral characteristics of asynchronous data in operational modal analysis[J]. Structural Control and Health Monitoring 2017; 24(11). (SCI期刊论文,JCR二区, IF:6.058)
奖励及荣誉:
1. 2021,江苏省“双创”博士
2. 2015-2018,董建华学者
3. 2014-2018,英国利物浦大学博士奖学金(全奖)
其他:
谷歌学术:https://scholar.google.co.uk/citations?user=SpAoxxIAAAAJ&hl=en
ResearchGate:
https://www.researchgate.net/profile/Yi-Chen-Zhu
人才需求:
注重对学生科研探索主动性与国际化的培养,提供与国际知名高校和学者的交流合作机会。欢迎具有力学,数学,计算机及人工智能背景,对结构健康监控、桥梁智能运维及数字孪生感兴趣的学生报考。