张裕卿

时间:2022-10-12浏览:9627


基本信息:

张裕卿,博士,教授,博士生导师

办公地点:东南大学九龙湖校区交通学院大楼410

联系方式:zhangyuqing@seu.edu.cn


张裕卿,东南大学青年首席教授。博士毕业于美国Texas A&M University,师从世界知名路面理论专家Robert L. Lytton教授。曾任英国阿斯顿大学高级讲师(副教授)和阿斯顿材料科学研究院院长。张裕卿教授研究领域包括路面力学计算与预测、多尺度多物理场模拟、可再生路用材料和智能道路检测技术等。主持过英国工程与物理科学研究委员会、英国皇家工程院、英国皇家学会、英国牛顿基金、欧盟H2020计划、美国交通部西南地区大学交通中心等机构资助的研究项目,其研究同时获得跨国石油沥青公司和建筑材料公司的资助。张裕卿教授是英国国家沥青研究协会(NARC)管理委员会委员、国际建筑材料系统与结构联盟(RILEM)技术委员会委员、欧洲沥青技术协会(EATA)技术委员会委员,同时是奥地利、英国、比利时、荷兰、波兰和沙特等国家自然科学基金专家评审人,获得德国亚琛工业大学2020年冯卡门学者奖。


研究方向:

  • 路面力学计算与预测

  • 多尺度多物理场模拟

  • 可再生路用材料

  • 智能道路检测技术

 

教育经历:

  • 2008 – 2012Texas A&M University,土木工程,博士;

  • 2005 – 2007:东南大学,道路与铁道工程,硕士;

  • 2001 – 2005:东南大学,土木工程,学士。

 

工作经历:

  • 2022 – 至今: 东南大学,交通学院道路工程系,教授;

  • 2015 – 2021: 英国阿斯顿大学(Aston University),高级讲师,阿斯顿材料科学研究院院长;

  • 2013 – 2015: 美国德克萨斯A&M交通研究院(Texas A&M Transportation Institute, 助理研究科学家。

 

科研项目:

(1)考虑尺寸效应的沥青-集料界面粘附性的多尺度模拟研究,英国EPSRC面上,416,228英镑,2021-2024,(PI

(2)纳米材料改性水泥与沥青胶结料性能预测,欧盟H2020计划,224,500欧元,2019-2021,(PI

(3)沥青材料愈合的多物理场研究,欧盟H2020计划,183,454欧元, 2018-2020,(PI

(4)沥青材料老化的多物理场研究,欧盟H2020计划,195,454欧元, 2017-2019,(PI

(5)废塑料制备高性能沥青,Aggregate Industries公司资助研究项目,60,000英镑,2019-2022,(PI

(6)中小企业功能性材料开发,欧洲区域发展基金,700,574英镑,2018-2021,(co-PI

(7)沥青胶结料抗裂性能的可靠评估,英国国家沥青研究协会,6,000英镑,2019-2020,(PI

(8)基于压电材料的道路能量收集,英国皇家学会,12,000英镑,2019-2021,(PI

(9)建筑固废修筑耐久性无污染路基,英国皇家学会,12,000英镑,2019-2021,(PI

(10)生物沥青的长期老化性能研究,英国理事会牛顿基金,英中联合研究与开发伙伴计划,10,300英镑,2018,(PI

(11)城市有机废弃物热裂解再生路用建筑材料,英国皇家医学院,全球挑战研究计划,25,000英镑,2018-2019,(PI

(12)多组分沥青混合料设计100%可回收沥青路面材料,英国皇家工程院,5,500英镑,2018,(PI

(13)粘弹性建筑材料的多尺度模拟与性能预测,英国EPSRC及阿斯顿大学,55,044英镑, 2016-2019,(PI

 

期刊论文:

(1)Abdy, C.*, Zhang, Y. $, Wang, J., Yang, Y., Artamendi, I., & Allen, B. (2022). Pyrolysis of polyolefin plastic waste and potential applications in asphalt road construction: A technical review. Resources, Conservation and Recycling, 180, 106213. Permalink.

(2)Gao, Y. *, Zhang, Y. $, Zhang, C., Liu, X., & Jing, R. (2022). Quantifying oxygen diffusion in bitumen films using molecular dynamics simulations. Construction and Building Materials, 331, 127325. Permalink.

(3)Zhang, H.*, Soenen, H., Carbonneau, X., Lu, X., Robertus, C., & Zhang, Y. $ (2022). Experimental and Statistical Analysis of Bitumen’s Field Ageing in Asphalt Pavements. Transportation Research Record, 03611981221079823. Permalink.

(4)Li, H.*, Chen, P.*, Wang, H., Luo, X., & Zhang, Y. $(2022). Pseudo energy-based crack initiation criterion for asphalt-filler composite system under a fatigue shear load. Theoretical and Applied Fracture Mechanics, 119, 103333. Permalink.

(5)Chen, P.*, Luo, X., Gao, Y.*, & Zhang, Y. $ (2022). Modeling percentages of cohesive and adhesive debonding in bitumen-aggregate interfaces using molecular dynamics approaches. Applied Surface Science, 571, 151318. Permalink.

(6)Lin, H., Chen, Q., Luo, X., Zhang, Y., Miao, K., Li, T., & Wang, K. (2022). Characterization of rheological properties and aging performance of bitumen modified by bio-oil from bamboo charcoal production. Journal of Cleaner Production, 338, 130678. Permalink.

(7)Omairey, E. L.*, Zhang, Y. $, Soenen, H., & Carbonneau, X. (2022). Parametric analysis and field validations of oxidative ageing in asphalt pavements using multiphysics modelling approaches. International Journal of Pavement Engineering, 1-24. Permalink.

(8)Li, H.*, Luo, X., Ma, F., & Zhang, Y. $ (2021). Micromechanics modeling of viscoelastic asphalt-filler composite system with and without fatigue cracks. Materials & Design, 209, 109983. Permalink.

(9)Gao, Y.*, Zhang, Y. $, Omairey, E. L.*, Al-Malaika, S., & Sheena, H. (2021). Influence of anti-ageing compounds on rheological properties of bitumen. Journal of Cleaner Production, 318, 128559. Permalink.

(10)Yan, W., Cong, L., Li, H.*, Zhang, Y., & Luo, X. $ (2021). Mechanistic Characterization of Fatigue Damage Process and Failure Predictions of Asphalt Binders. Journal of Transportation Engineering, Part B: Pavements, 147(3), 04021036. Permalink.

(11)Zheng, W., Wang, H. $, Chen, Y., Ji, J., You, Z., & Zhang, Y. (2021). A review on compatibility between crumb rubber and asphalt binder. Construction and Building Materials, 297, 123820. Permalink.

(12)Cai, J. $, Rahman, M. M., Zhang, S., Sarker, M., Zhang, X., Zhang, Y., Yu, X. & Fini, E. H. (2021). Review on Aging of Bio-Oil from Biomass Pyrolysis and Strategy to Slowing Aging. Energy & Fuels, 35(15), 11665-11692. Permalink.

(13)Li, H.*, Luo, X.$, & Zhang, Y. (2021). A kinetics-based model of fatigue crack growth rate in bituminous material. International Journal of Fatigue, 148, 106185. Permalink.

(14)Li, L.*, Yang, Y., Gao, Y.*, & Zhang, Y. $ (2021). Healing characterisations of waste-derived bitumen based on crack length: Laboratory and modelling. Journal of Cleaner Production, 316, 128269. Permalink.

(15)Li, L.*, Zhang, Z., Wang, Z., Wu, Y., Dong, M. $, & Zhang, Y. (2021). Coupled thermo-hydro-mechanical response of saturated asphalt pavement. Construction and Building Materials, 283, 122771. Permalink.

(16)Lu, G.*, Wang, H., Zhang, Y.$, Liu, P., Wang, D. $, Oeser, M., & Grabe, J. (2021). The hydro-mechanical interaction in novel polyurethane-bound pervious pavement by considering the saturation states in unbound granular base course. International Journal of Pavement Engineering, 1-14. Permalink.

(17)Li, H.*, Luo, X. $, Zhang, Y., & Xu, R. (2021). Stochastic fatigue damage in viscoelastic materials using probabilistic pseudo J-integral Paris' law. Engineering Fracture Mechanics, 245, 107566. Permalink.

(18)Li, L.*, Gao, Y.*, & Zhang, Y. $(2021). Predicting healing in viscoelastic bitumen using alien strain method. International Journal of Fatigue, 145, [106102]. Permalink.

(19)Li, L.*, Gao, Y.*, & Zhang, Y. $(2021). Fatigue Cracking Characterisations of Waste-derived Bitumen Based on Crack Length. International Journal of Fatigue, 142, [105974]. Permalink.

(20)Omairey, E. L.*, Gu, F.* $, & Zhang, Y. $ (2021). An Equation-Based Multiphysics Modelling Framework for Oxidative Ageing of Asphalt Pavements. Journal of Cleaner Production, 280, [124401]. Permalink.

(21)Du, Z., Zhu, X.$, & Zhang, Y. (2021). Diffusive Dynamics and Structural Organization of Moisture in Asphaltic Materials Based on Molecular Dynamics Simulation. Journal of Materials in Civil Engineering, 33(1), [04020403]. Permalink.

(22)Luo, X. $, Li, H., Deng, Y., & Zhang, Y. (2020). Energy-Based Kinetics Approach for Coupled Viscoplasticity and Viscofracture of Asphalt Mixtures. Journal of Engineering Mechanics, 146(9), [04020100]. Permalink.

(23)Li, H.*, Luo, X. $, Yan, W., & Zhang, Y. (2020). Energy-based mechanistic approach for crack growth characterization of asphalt binder. Mechanics of Materials, 148, [103462]. Permalink.

(24)Lu, G.*, Wang, H., Törzs, T., Liu, P., Zhang, Y., Wang, D.$, Oeser, M., & Grabe, J. (2020). In-situ and numerical investigation on the dynamic response of unbounded granular material in permeable pavement. Transportation Geotechnics, 25, [100396]. Permalink.

(25)Gao, Y.*, Li, L.*, & Zhang, Y. $ (2020). Modelling crack initiation in bituminous binders under a rotational shear fatigue load. International Journal of Fatigue139, [105738]. Permalink.

(26)Omairey, E. L.*, Zhang, Y. $, Gu, F.*, Ma, T., Hu, P., & Luo, R. (2020). Rheological and fatigue characterisation of bitumen modified by anti-ageing compounds. Construction and Building Materials, 265, [120307]. Permalink.

(27)Li, L.*, Gao, Y.*, & Zhang, Y. $ (2020). Crack Length Based Healing Characterisation of Bitumen at Different Levels of Cracking Damage. Journal of Cleaner Production, 258, Permalink.

(28)Gao, Y.*, Li, L.*, & Zhang, Y. $ (2020). Modeling Crack Propagation in Bituminous Binders under a Rotational Shear Fatigue Load using Pseudo J-Integral Paris’ Law. Transportation Research Record. 2674(1), 94-103. Permalink.

(29)Luo, X., Li, H., Deng, Y.*, & Zhang, Y. (2020). Energy-Based Kinetics Approach for Coupled Viscoplasticity and Viscofracture of Asphalt Mixtures. Journal of Engineering Mechanics, 146(9), [04020100]. Permalink.

(30)Li, H.*, Luo, X.$, Yan, W., & Zhang, Y. (2020). Energy-based mechanistic approach for crack growth characterization of asphalt binder. Mechanics of Materials148, [103462]. Permalink.