师资队伍

于新莲

时间:2025-06-05浏览:12

(#指导学生,*通讯作者)

1.      Yu, X., Hua, M., Chen, J., Peng, J., Hua, M. (2025). Uncovering Passenger-seeking Behavior of Vacant Taxis from Trajectory Data via Self-supervised Deep Spectral Clustering. IEEE Transactions on Intelligent Transportation Systems26(4).

2.      Hua, M., Yu, X., Chen, X., Chen, J., & Cheng, L. (2025). Can bike sharing achieve self-balancing distribution? Evidence from dockless and station-based cases. Travel Behaviour and Society38, 100879.

3.      Dong, C., Xiong, Z., Li, N., Yu, X., Liang, M., Zhang, C., & Wang, H. (2025). A real-time prediction framework for energy consumption of electric buses using integrated Machine learning algorithms. Transportation Research Part E: Logistics and Transportation Review194, 103884.

4.      Yu, X., Chen, J., Kumar, P., Khani, A., & Mao, H. (2024). An integrated optimization framework for locating depots in shared autonomous vehicle systems. Transportmetrica A: Transport Science20(2), 2152299.

5.      Yao, H.#, Yu, X. *, Mao, H., Bai, D., & Zhang, S. (2024). The spatial spillover impact and transmission mechanisms of logistics agglomeration on eco-efficiency: A case study in China. Energy308, 132826.

6.      Yu, S., Peng, J., Ge, Y., Yu, X., Ding, F., Li, S., & Ma, C. (2024). A traffic state prediction method based on spatial–temporal data mining of floating car data by using autoformer architecture. ComputerAided Civil and Infrastructure Engineering39(18), 2774-2787.

7.      Yu, X., Zhu, Z., Mao, H., Hua, M., Li, D., Chen, J., & Xu, H. (2023). Coordinating matching, rebalancing and charging of electric ride-hailing fleet under hybrid requests. Transportation Research Part D: Transport and Environment, 123, 103903.

8.      Yu, X., Khani, A., Chen, J., Xu, H., & Mao, H. (2022). Real-time holding control for transfer synchronization via robust multiagent reinforcement learning. IEEE Transactions on Intelligent Transportation Systems23(12), 23993-24007.

9.      Yu, X., & Gao, S. (2022). A batch reinforcement learning approach to vacant taxi routing. Transportation Research Part C: Emerging Technologies, 139, 103640.

10.  Mai, T., Yu, X.*, Gao, S., & Frejinger, E. (2021). Routing policy choice prediction in a stochastic network: Recursive model and solution algorithm. Transportation Research Part B: Methodological, 151, 42-58.

11.  Yu, X., Gao, S., Hu, X., & Park, H. (2019). A Markov decision process approach to vacant taxi routing with e-hailing. Transportation Research Part B: Methodological, 121, 114-134.

12.  Yu, X., & Gao, S. (2019). Learning routing policies in a disrupted, congestible network with real-time information: An experimental approach. Transportation Research Part C: Emerging Technologies, 106, 205-219.


版权所有@东南大学交通学院

地址:江苏省南京市江宁区东南大学路2号交通学院 邮编:211189

邮箱:seutc_official@126.com

    欢迎关注东南大学交通学院官方微信平台