代表性论文
1. Li, H., Luo, X., Yan, W., & Zhang, Y. (2020). Energy-Based Mechanistic Approach for Crack Growth Characterization of Asphalt Binder. Mechanics of Materials, 103462.
2. Li, H., Luo, X., Ma, F., & Zhang, Y. (2021). Micromechanics modeling of viscoelastic asphalt-filler composite system with and without fatigue cracks. Materials & Design, 209, 109983.
3. Li, H., Luo, X., & Zhang, Y. (2021). A kinetics-based model of fatigue crack growth rate in bituminous material. International Journal of Fatigue, 148, 106185.
4. Li, H., Luo, X., Zhang, Y., & Xu, R. (2021). Stochastic fatigue damage in viscoelastic materials using probabilistic pseudo J-integral Paris' law. Engineering Fracture Mechanics, 245, 107566.
5. Li, H., Chen, P., Wang, H., Luo, X., & Zhang, Y. (2022). Pseudo energy-based crack initiation criterion for asphalt-filler composite system under a fatigue shear load. Theoretical and Applied Fracture Mechanics, 119, 103333.
6. Li, H., Ling, J., Leng, Z., Zhang, Y., & Luo, X. (2023). Nonlinear Viscoelasticity and Viscoplasticity Characteristics of Virgin and Modified Asphalt Binders. ASCE Journal of Engineering Mechanics, 149(10), 04023074.
7. Li, H., Luo, X., Gu, Z., Chen, Q., & Zhang, Y. (2023). Predicting Crack Growth of Paving Materials under Indirect Tensile Fatigue Loads. International Journal of Fatigue, 107818.
8. Li, H., Luo, X, Zhang, Y., & Leng, Z. (2023). Viscoelastic Fracture Mechanics-based Fatigue Life Model in Asphalt-filler Composite System. Engineering Fracture Mechanics. 109589.
9. Li, H., Tan, Z., Li, R., Luo, X, Zhang, Y., & Leng, Z. (2024). Mechanistic Modeling of Fatigue Crack Growth in Asphalt Fine Aggregate Matrix under Torsional Shear Cyclic Load. International Journal of Fatigue, 107999.
10. Li, H., Luo, X., & Zhang, Y. (2024). Predicting Fatigue Crack Growth Rate of Cement-Based and Asphalt Paving Materials based on Indirect Tensile Cyclic Loading Tests. Engineering Fracture Mechanics, 110146.
11. Li, H., Zhang, Y., Chen, Q., Xu, Z., & Luo, X. (2024). Rheological and bonding properties of aged bio-bitumen derived from slow pyrolysis of bamboo waste. Construction and Building Materials, 438, 136990.
12. Li, H., Luo, X., & Zhang, Y. (2020). Pseudo energy-based kinetic characterization of fatigue in asphalt binders. China Journal of Highway and Transport, 33(10), 115.
13. Luo, X., Ling, J., Li, H. *, Zhang, Y., & Li, Y. (2023). Nonlinear viscoelastoplastic kinetics for high-temperature performance of modified asphalt binders. Mechanics of Materials, 180, 104612.
14. Cao, K., Li, H. *, Liu, G., Huang, Z., & Wu, G. (2023). Bonding properties between steel-basalt hybrid fibers reinforced cementitious composites and existing concrete at high temperatures. Journal of Building Engineering, 70, 106371.
15. Cao, K., Liu, G., Li, H. *, Huang, Z., & Wu, G. (2023). Correlation between macroscopic properties and microscopic pore structure in steel-basalt hybrid fibers reinforced cementitious composites subjected to elevated temperatures. Construction and Building Materials, 365, 129988.
16. Fang, C., Guo, N., Li, H. *, Leng, Z., & Jiang, J. (2024). Investigating Fatigue Damage Accumulation of Asphalt Binders Considering Amplitude Sequence and Loading Interaction. ASCE Journal of Materials in Civil Engineering, 36(6), 04024142.
17. Cao, K., Liu, G., Li, H. *, & Huang, Z. (2024). Multiscale prediction of thermal damage for hybrid fibers reinforced cementitious composites blended with fly ash at high temperatures. International Journal of Damage Mechanics, 33(5), 351-377.
18. Fang, C., Li, H. *, Li, Z., Chen, Y., & Guo, T. (2025). Fatigue Life Prediction of Asphalt Binders under Variable Loading Levels based on Dissipated Pseudo-strain Energy. Case Studies in Construction Materials, e04321.
19. Luo, X., Li, H., Deng, Y., & Zhang, Y. (2020). Energy-Based Kinetics Approach for Coupled Viscoplasticity and Viscofracture of Asphalt Mixtures. ASCE Journal of Engineering Mechanics, 146(9), 04020100.
20. 李辉, 罗雪, 张裕卿. 基于耗散伪应变能的沥青疲劳动力学表征[J].中国公路学报: 2020, 33(10): 115-124.